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Introduction
Aging has been proposed to involve multiple, progressive 
functional changes in cells, organs, tissues, and entire or-
ganisms as they grow older due to intrinsic (genetic) and 
extrinsic (epigenetic/environmental) factors.1–7 Aging is also 
a process that involves environmental, psychological, physi-
ological, behavioral, and other biological changes.8 These 
changes can result in age-related multiple morbidities.9,10

During aging, the ability to maintain homeostasis and 
adapt to changing conditions is reduced, and susceptibilities 
to stress, injury, and disease are increased. It has been pro-
posed that the elderly are more susceptible to age-related 
morbidities due to progressive functional declines in tissue 

and organ functions and a reduced ability to adapt physi-
ologically.3,11–16

At the mechanistic level, aging has been linked to the 
progressive accumulation of cellular and molecular damage 
and to changes in various interlinked mechanisms that in-
clude damage to lipids, proteins, and nucleic acids, result-
ing in membrane and cell dysfunction and genomic insta-
bility; epigenetic changes; chronic inflammation; fibrosis; 
telomere attrition; stem cell exhaustion; ion and metabolic 
shifts; changes in metabolite generation; loss of proteosta-
sis; disturbances in signal pathways and neurotransmitters; 
accumulation of misfolded or aggregated proteins; deregu-
lated nutrient sensing; and other changes that reinforce an 
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increase in general cellular dysfunction.1,3–5,12,13,17–24

During the process of aging and in essentially all chronic 
and acute illnesses, intracellular and cellular membranes, 
as well as other cellular components, are key constituents 
in positive feedback cycles involving damage, and they are 
modified, in part, by exposure to surplus free radical oxidants 
and other forms of impairment.12,21,25–30 Although damage 
to cellular structures has been purported to be an important 
event contributing to the aging process,25–29 it is now accept-
ed that free radical oxidants, such as reactive oxygen and ni-
trogen species (ROS/RNS), are not the sole basis of aging or 
diseases promoted by aging.30–33 However, the production of 
excess ROS/RNS and other free radical oxidants, along with 
the cellular damage resulting from their reactions, is thought 
to play an important role, in addition to other mechanisms, 
in age-related changes and the initiation and progression of 
various chronic diseases.1,5,16,17–22,25–28,31,33–35

Cellular membranes
Among the important cellular components modified with 
aging and disease are the various cellular membranes in-
volved in compartmentalizing cells and cell cytoplasm and 
separating various chemical, enzymatic, and signaling path-
ways within cells. Organelles like the nucleus, mitochondria, 
endoplasmic reticulum, endosomes, and other intracellular 
structures are bounded by characteristic membranes com-
posed primarily of lipid and protein components. How these 
membrane components are organized into various function-
al cellular barriers has been under intense investigation for 
the last six decades.36–41

Cellular membranes in aqueous solutions are macromo-
lecular structures held together predominantly by hydropho-
bic and van der Waals forces, as well as to a minor extent by 
ionic connections and a few covalent bonds. At nanometer 
distances, these forces and interactions result in the estab-
lishment of active membrane barriers consisting of amphip-
athic lipids, glycoproteins, and proteins that associate into 
predominantly non-covalently linked molecular assemblies 
possessing diverse degrees of lateral and rotational mobil-
ity.36–42 The basic barriers formed by biological membranes 
are built on a lipid bilayer matrix composed primarily of glyc-
erophospholipids (GPL).43,44

From early experiments in the last century, three compet-
ing models for basic cellular membrane organization were 
proposed. Initially, Danielli and Davson suggested that cell 
membranes were composed of phospholipid bilayers inter-
acting with compressed or flat-structured proteins (predomi-
nantly beta-sheet structured) through the proteins’ charged 
amino acids and the hydrophilic headgroups of the mem-
brane GPL.45 Robertson used transmission electron micros-
copy to visualize this structure as a tri-molecular layered as-
sembly of molecules.46 This depiction of a cell membrane 
was offered as proof of various cellular membranes being 
trimolecular layers or protein/phospholipid/protein sheets 
(Trilayer or Unit Membrane). A completely different type of 
cell membrane organization was presented by Benson and, 
separately, by Vanderkooi and Green, involving monolayers 
of repeating subunits of lipoproteins that did not incorporate a 
phospholipid bilayer into their structure (Lipoprotein Subunit/
Protein Crystal Membrane).47,48 However, neither of these 
models was consistent with available data.36,37 In 1972, the 

Fluid–Mosaic Membrane (FMM) model was introduced as a 
general explanation for the structure and dynamics of cel-
lular membranes. This model was based on a lipid bilayer 
with membrane glycoproteins and proteins intercalated into 
the lipid bilayer to varying degrees.36 Since its introduction, 
the FMM model has been considered the most suitable 
representation of cellular membrane structure and dynam-
ics at the nanometer level compared to other models.39–41 
(See Fig. 1 of Nicolson and Ferreira for a comparison of the 
three main models for biological membranes.) This is intro-
duced here because the repair and maintenance of cellular 
membranes are critical to maintaining health and longevity 
and preventing positive feedback cycles generated during 
aging.17,18,20–22

It is now thought that a common characteristic of cellular 
membranes is the existence of distinct membrane regions 
with unique lipid and protein compositions, termed mem-
brane domains.38,39,41,49 In these domains, the spatial organ-
ization, movements (such as rotational and lateral mobility), 
and lifetimes of molecular components are unlike the bulk or 
average properties of the membranes.38,39,49,50 These dis-
tinct physical characteristics include the inner and outer GPL 
leaflets that form the lipid bilayer. The FMM concept allows 
for the presence of membrane domains with unique compo-
sitions and mobility.39,49,50

We now know that cellular membranes are much more 
complex than implied by early membrane models. For ex-
ample, considering only membrane lipids, they include vari-
ous GPL, sphingolipids, sterols, and other lipids.37–39,49,50 
Due to their cooperative properties and their propensity to 
match hydrophobic regions, various combinations of these 
lipids organize nonrandomly into lipid bilayers at physiologi-
cal temperatures. Due to lateral segregation, they can also 
form nanometer-to-micrometer-sized domains with differing 
compositions.37,49,50 Lipid domains have unique composi-
tions and properties different from the bulk membrane lipids. 
Some of these lipid domains can occur as islands encircled 
by disordered fluid-phase lipids.37–39,49,50

Age and various pathologies can change the biochemical 
characteristics and structural organization of cellular mem-
branes. For example, as cells age, the fluidity of lipids at 
protein-lipid boundaries can change, as can the composi-
tions of membrane lipid components.51 Other age- and dis-
ease-related changes in specific cellular membranes will be 
discussed in subsequent sections. Since membrane lipids 
are essential to the structure and function of biological mem-
branes, when damage to membrane lipids occurs due to ag-
ing, trauma, or disease, the damaged lipids must be repaired 
or replaced to regain function. This is where membrane lipid 
replacement (MLR)—the use of protected oral membrane 
lipids to replace damaged membrane lipids in tissues and 
cells—can be used to restore membrane function.40,41 This 
will be discussed in more detail in subsequent sections.

Mitochondrial inner membranes
As essential organelles, mitochondria supply cells with 
important bioenergetic molecules as well as molecules in-
volved in metabolic and signaling biochemistry. In addition, 
they are essential in providing innate immunity, programmed 
cell death, calcium and iron homeostasis, and other cell 
functions.12,17,18,23,52,53 All mitochondria have a double-mem-



Nat Cell Sci 2024;2(4):238–256 
https://doi.org/10.61474/ncs.2024.00038

Nature Cell and Science | www.cellnatsci.com240

brane system similar to bacteria, their proposed ancestral 
origin.22,54,55 Here, we will focus on the inner membranes of 
mitochondria.

The most commonly known feature of the inner mitochon-
drial membrane (MIM) is the production of essential high-
energy molecules, especially ATP, from the breakdown of 
lipid and carbohydrate substrates plus oxygen, which pro-
vide electrons to the components of the electron transport 
chain (ETC). This process is accomplished by utilizing a suc-
cession of redox reactions of five membrane enzyme com-
plexes and cofactors like CoQ10, localized in the MIM (Fig. 
2).56,57 The end products of this process are the reduction 
of molecular oxygen to water and the enzymatic synthesis 
of ATP.58–62

In addition to the ETC complexes in the MIM that contain 
components possessing iron-sulfur clusters, copper centers, 
and cytochromes necessary for the transfer of electrons, the 
MIM also utilizes flavins and CoQ10 in the electron transfer 
process. This process occurs as a sequence of oxidation-
reduction reactions that generate an electrochemical gradi-
ent (ΔΨm) across the MIM.12,60,61 The MIM electrochemical 
gradient (ΔΨm of approximately −150 mV across the MIM 
under standard respiration conditions), or, if protons are 
considered, the proton motive force Δp, is then utilized by 

complex V to drive ATP generation from phosphate and ADP 
substrates.61–63 If the MIM ΔΨm (or proton electrochemical 
gradient (Δp)) cannot be maintained at −150 mV, complex 
V cannot flow protons across the MIM to synthesize ATP. 
When the MIM is compromised, for example, by free radi-
cal ROS/RNS damage to MIM lipids, increased numbers of 
protons can leak across the MIM. This most likely occurs at 
interface regions between modified lipids and other lipids, 
or between lipids bound to ETC complexes and bulk lipids, 
or through modified activities of MIM uncoupling proteins 
(see the diagram showing leak, proton flow, purple arrows, 
Fig. 2).61–64 The result is a decrease in Δp (and accordingly 
ΔΨm), which diminishes the ability of the MIM to synthesize 
ATP. Thus, it is absolutely necessary to maintain the integrity 
of the MIM in order to maintain Δp and ΔΨm so that cellu-
lar levels of ATP can be sustained.58,61–65 Moreover, some 
proton leak occurs naturally, and this may be necessary for 
thermogenesis, maintaining carbon flux, and modulating nu-
trient responses.66

ROS/RNS (ROS, composed primarily of hydroxyl radi-
cals, superoxide anions, and hydrogen peroxide, plus RNS 
species like peroxynitrite) are formed at the inner side of the 
MIM during respiration as a byproduct of the flow of elec-
trons through the ETC and synthesis of ATP (Fig. 2). Some 

Fig. 1. The formation of reactive oxygen species (ROS) and nitrogen species (RNS) at the inner surface of the mitochondrial inner 
membrane (MIM). ROS are generated by mitochondrial complexes I and III (cI and cIII) during the transfer of electrons in the electron transport 
chain (ETC) that drives protons to the intermembrane space and establishes the transmembrane proton and electrochemical potential (ΔΨm ) 
across the MIM. Protons then flow back across the MIM through complex V (cV) to the mitochondrial matrix, forming ATP in the process. Some 
protons also flow back across the MIM due to uncoupling proteins (UCP), and some leak across the MIM lipid bilayer into the matrix (purple 
arrows). During aging, there is an increase in ROS generated by the ETC, resulting in increased oxidative damage to lipids, proteins, and DNA 
(modified from Grimm and Eckert and Nicolson et al.56,57).



Nat Cell Sci 2024;2(4):238–256 
https://doi.org/10.61474/ncs.2024.00038

Nature Cell and Science | www.cellnatsci.com 241

production of ROS/RNS is necessary to maintain cellular 
signaling and other cellular processes like growth, prolifera-
tion, and apoptosis, but this process must be controlled.30 
To control the proton gradient (Δp) and maintain redox bal-
ance, uncoupling proteins are present in the MIM to mediate 
the regulated discharge of the proton gradient so that the 
concentrations of ROS/RNS can be regulated (Fig. 2).63,66,67 
Since oxidative phosphorylation is not completely coupled 
with ATP production, even in the presence of uncoupling 
proteins, excess ROS/RNS can be present above levels 
that are normally neutralized by endogenous cellular antioxi-
dants. If the excess production of ROS/RNS is not carefully 
controlled, the result is damage to sensitive cellular lipids, 
proteins, and DNA.25,63,66–68 The excess ROS/RNS can ef-
ficiently cross the MIM and outer mitochondrial membrane 
and react with cellular components.25,63,66–69 If the damaged 
lipids, proteins, and DNA from this process are not repaired 
or replaced, the result is impaired function and loss of vari-
ous cellular activities.56,59,62,69

Excess ROS/RNS produced by mitochondria and other 
mechanisms can directly damage various cellular mem-
branes. In addition, ROS/RNS can have indirect effects on 
membrane functions by modification of non-membrane pro-
teins.70,71 Much of the damage to membranes occurs when 
ROS/RNS create lipid dienes, hydroperoxides, and other li-
pid modifications. Of particular importance is the formation 
of lipid peroxides in polyunsaturated fatty acids (FAs) of GPL 
that are unstable and result in products like malondialdehyde 
and 4-hydroxy-2-nonenal.25,71 Protein oxidation by ROS/RNS 
can also result in protein carbonyls and other oxidation prod-
ucts that can indirectly affect enzyme and membrane protein 
functions.25,70 Gutteridgehas outlined the types of ROS/RNS 
membrane and cellular modifications that have been impli-

cated in or are components of aging and disease pathology, 
including diseases involving excess generation of superoxide, 
hydrogen peroxide,28 and hypochlorous acid; drug-induced 
ROS; electron transfer by transition metals; excessive sub-
strate oxidation or changes in oxygen concentration; failure 
of host protective defenses, and excess free radicals affecting 
other structural changes or perturbations in cells.

The deterioration of mitochondrial and other cellular func-
tions is known to occur with advancing age. This is largely 
thought to be due to the over-production of excess ROS/
RNS and their reaction with MIM lipids, cellular proteins 
and membranes, mitochondrial (mtDNA) and nuclear DNA, 
and other mechanisms.12,22,72 If not limited, this deteriora-
tion can result in mitochondrial destructive processes or 
mitophagy.12,19,72–76 Such observations have stimulated pro-
posals that the aging of animals and their lifespans are regu-
lated by their mitochondria.26,27,77 The main source of ex-
cess cellular ROS/RNS is definitely the mitochondria.25,73,76 
Even if low levels of ROS/RNS production are necessary to 
maintain normal cellular physiology, especially intracellular 
signaling, excess production above levels neutralized by 
endogenous antioxidants can result in irreversible damage 
to critical cellular structures.25,29,52,78 Although mitochondrial 
decline is definitely associated with aging,21,72 there are rea-
sons to doubt the hypothesis that aging is solely controlled 
by mitochondrial ROS/RNS.12,21,31

Membrane GPLs that form the lipid matrix of the MIM and 
other intracellular and plasma membranes are particularly 
sensitive to ROS/RNS injury. Among the most ROS/RNS-
sensitive, functionally important phospholipids in the MIM is 
cardiolipin (CL).79 Unique to mitochondria, CL constitutes up 
to 20% of MIM phospholipids. CL is essential for mitochon-
drial membrane fluidity, osmotic stability, ETC function, and 

Fig. 2. Membrane GPLs are located in various membrane and lipid structures inside and outside cells. The example shown here is a 
liver cell. Membrane lipid replacement (MLR) glycerophospholipids (GPL) are transported into cells and into various intracellular membranes 
and lipid structures, such as lipoproteins, liposomes, chylomicrons, globules, lipid droplets, and other intracellular membranes. These structures 
can absorb damaged lipids, toxins, and toxic hydrophobic chemicals by partitioning and then remove and transport them from cells, where they 
are partitioned into other circulating lipid structures (modified from Nicolson).123
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maintenance of ΔΨm.80,81 Therefore, ROS/RNS damage to 
CL in the MIM can result in ETC dysfunction, the collapse of 
ΔΨm, and eventually mitophagy.82 Thus, CL is considered a 
critical target for mitochondrial dysfunction.83

In addition to CL, ROS/RNS oxidative damage can also 
distort and disrupt other mitochondrial membrane lipids, 
such as certain unsaturated GPLs. The unsaturated FAs in 
GPLs are very susceptible to damage by ROS/RNS.25,84

Mitochondrial oxidative events can interfere with mem-
brane organization, especially lipid-lipid and lipid-protein in-
teractions, and they can modify MIM lipid fluidity, which is 
necessary for ETC function.84,85 Eventually, ROS/RNS dam-
age to the MIM also increases proton leak across the MIM, 
resulting in reduced Δp (and ΔΨm ) and loss of ATP produc-
tion. Indeed, there is a direct association between ROS/RNS 
damage to unsaturated mitochondrial lipids and loss of mi-
tochondrial function.86 Thus, as membrane lipids, especially 
those found in mitochondria, are injured by ROS/RNS, they 
must be continuously replaced or repaired to maintain mito-
chondrial and cellular functions at normal levels.

Membrane ion channels
Membrane ion channels are constructed from pore-forming 
proteins that span membrane lipid bilayers and allow ions 
to move across those membranes at high rates. Ion chan-
nels can dissipate the energy of membrane electrochemical 
gradients, such as in the MIM, and in the process, convert 
that energy into chemical, physical, or electrical signals. Ion 
channels are implicated in several biological processes in-
volving intracellular and plasma membranes, and they are 
importantly entangled in the aging process and age-related 
morbidities.7,13

Ion channels have been found to be important in age-
associated neurological and vascular diseases, such as 
Alzheimer’s disease, various cardiovascular disorders, and 
disease-associated pain and inflammation. Ion channels 
have also been used as targets for therapeutic treatments 
for various conditions.7,13,87 In particular, changes in ion 
channel function have been implicated in the aging of the 
brain and in furthering the deterioration of cognitive function, 
which is a facet of normal aging.88 The main mechanisms of 
damage during brain aging are inflammation and oxidative 
stress, both of which can result in cell degeneration, cogni-
tive decline, and death.72 In the brain, ROS/RNS species and 
the subsequent oxidation of different proteins (especially in 
membranes and their ion channels) have been proposed to 
participate in the aging process.89 In particular, calcium and 
potassium channels, such as calcium-activated potassium 
channels (Slo1 or K(Ca) channels), are likely involved in the 
mechanisms that underlie cognitive decline.88,90 Although 
there are many types of calcium/potassium channels or 
K(Ca) channels, most of them are modulated by lipids.91,92 
As will be discussed below, it has been observed in several 
clinical studies that supplementation with exogenous lipids 
and replacement of critical GPLs improved cognition in aged 
individuals.

Another example of how ROS/RNS damage to ion chan-
nels can affect cells is their effect on L-type voltage-sensitive 
calcium channels. The opening of L-type voltage-sensitive 
calcium channels can be stimulated by ROS, resulting in 
excessive increases in intracellular calcium concentrations. 

This has been observed in neurodegeneration, stroke, and 
other conditions where excess generation of ROS/RNS oc-
curs along with increased Ca2+ concentrations.93,94 This is of 
particular importance since L-type Ca2+ channels are a key 
player in Ca2+ homeostasis, which is also known to play a 
role during aging.95 Other ion channels and ion transporters 
are also critical in the maintenance of intracellular calcium 
homeostasis; however, a discussion of these topics is be-
yond the scope of this review (see ref. 96 for additional infor-
mation on this topic).

Apoptosis is another cellular event where ROS/RNS dam-
age to mitochondrial permeability transition pores (mPTP) 
can cause its initiation. This is thought to be caused by oxi-
dation of tightly protein-bound lipids that can accelerate the 
calcium release process and result in a chain of events de-
scribed as calcium-dependent apoptosis.97 Thus, ROS/RNS-
induced increases in the permeabilities of certain membrane 
channels can affect Ca2+ homeostasis. It has been observed 
during in vitro studies that certain cell disturbances, such as 
increased intracellular Ca2+ concentrations due to exposure 
to oxidizing agents, could be minimized when cells were in-
cubated with replacement phospholipids.98

In the mitochondria, ion channels have been determined 
to be indirectly or directly associated with aging and age-
related conditions.13,99 For example, MIM ion channels 
are crucial in regulating mitochondrial function, and their 
dysfunction has been connected to aging and age-linked 
diseases. Impaired oxidative phosphorylation activity, in-
creased ROS/RNS release, and decreased ATP production 
are all related to aging.12 Ion channels in mitochondria have 
been proposed as the gatekeepers of life and death, and 
most cellular energy production depends on fully functional 
mitochondria, which in turn depends on regulated ion chan-
nels.13,100

As discussed above, the activity of a critical mitochondrial 
membrane channel that is important in aging and age-asso-
ciated degenerative disorders, the mPTP,99,101 is enhanced 
in aging. It has also been established to be important in 
many age-associated degenerative conditions.102,103 An im-
portant role of the mPTP is the passage of ROS/RNS from 
mitochondria into cells, which is mainly dependent on the 
mPTP. When the mPTP is stimulated by calcium ions, oxi-
dative stress, or depolarization of the MIM, the result is that 
protons move into the mitochondrial matrix, leading to the 
collapse of Δp and ΔΨm and the loss of ATP production. In 
the process, superoxide, hydrogen peroxide, calcium, and 
various other ions flood through the mPTP and exit the mi-
tochondria into the cytoplasm, where subsequent damage 
occurs.102,103 Eventually, prolonged activation of the mPTP 
can result in cell demise by necrosis or apoptosis.101

Therefore, the mechanisms of ion transport in cell mem-
branes and mitochondria are of major regulatory importance 
in pathways that can determine the rates of cell or organism 
aging and death, and some membrane channels have been 
proposed to function at the intersection of one or more of the 
control points of aging.13,100 Interestingly, most mitochondrial 
ion channels are modulated by lipids, suggesting that mem-
brane lipids might be a suitable therapeutic agent.104–106

MLR
ROS/RNS-damaged membrane phospholipids cannot be 
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easily repaired, and the exchange and replacement of oxi-
dized/damaged membrane phospholipids with undamaged, 
functional membrane phospholipids are crucial for mitochon-
drial function as well as for multiple cellular and tissue func-
tions that are essential for maintaining general health.107–110

When dietary lipids are ingested, they are almost ex-
clusively absorbed in the small intestine, where enzymatic 
and non-enzymatic degradation can occur. The degradation 
products are then absorbed by epithelial cells.111,112 How-
ever, when present in excess of degradative enzymes in the 
small intestine, GPL and other lipids can also be transported 
through the epithelial lining within small globules, liposomes, 
and other lipid structures. The GPL subsequently find their 
way into the portal blood circulation to the liver in relatively 
undegraded forms.113 This type of absorption is very effi-
cient, and more than 90% of absorbed GPL make their way 
from the gastrointestinal system into the blood circulation 
within six hours.112–115

Dietary lipids, like GPL with unsaturated FAs, are very 
sensitive to oxidation and degradation throughout the vari-
ous steps in their preparation, storage, ingestion, and ab-
sorption.116 To avoid damage and degradation, dietary GPL 
have been supplemented with protective plant inulins (fruc-
tooligosaccharides). When added to GPL formulations, the 
inulin molecules insert themselves among the head groups 
of the GPL and the hydrophobic lipid tail bilayer, shielding 
these lipids with their double bonds from the effects of high 
or low temperatures, degradative enzymes, bile salts, acid-
ity, and various oxidative events.117,118 Such complexed, pro-
tected GPL form the basis of oral MLR, and these protected 
GPL are essential for the removal and replacement of dam-
aged membrane lipids.40,110,119,120

In the liver, some of the GPL are absorbed by liver cells as 
individual molecules transferred mainly from lipoproteins to 
the plasma membrane. Alternatively, when they are present 
in excess, they are mostly moved by bulk transfer or endo-
cytosis of liposomes, lipid globules, and other forms into en-
dosomes.120–122 Once inside liver cells, the inulin-protected 
GPL can partition into various intracellular membranes and 
other hydrophobic structures, including liposomes, lipid glob-
ules, droplets, chylomicrons, and other phospholipid-con-
taining structures inside various cells (Fig. 1).123 The trans-
fer and movement of most phospholipids inside cells occur 
by a process of contact-mediated partitioning.124,125 When 
they reach their intracellular destination sites, the membrane 
lipids can be enzymatically modified, and they will eventu-
ally reflect the lipid compositions usually found at these lo-
cations.126 In reverse, oxidized or partially degraded phos-
pholipids can be exchanged and displaced from membranes 
and other structures. The exchanged lipids can partition back 
into lipid globules, liposomes, chylomicrons, and other intra-
cellular lipid structures. Eventually, the damaged lipids can 
be partitioned or transferred into membrane pre-exosomes 
for secretion or sequestered into other lipid structures des-
tined for secretion from cells by exocytosis.110,119–122

The exchanged, damaged lipids that are secreted from 
tissues and organ cells into the blood circulation and lymph 
are eventually returned to the gastrointestinal system for 
bulk export in the stool.110 This entire process operates on a 
‘mass action’ or ‘bulk flow’ system that acts like a conveyor 
belt, delivering undamaged replacement lipids to cells and 
tissues,122 while simultaneously acting as a removal and 

disposal system for damaged, oxidized, and degraded lipids 
(Fig. 3).110,119–123

Because of the fluidity of mammalian cell membranes and 
the presence of fusogenic membrane domains, transported 
lipids can fuse with various cellular membranes and eventu-
ally with the intracellular membranes of all organelles.124,125 
For example, we have observed in living cells that added 
GPL nanomicelles are first incorporated into the plasma 
membranes and then partitioned into intracellular mem-
branes, including mitochondrial membranes.98

Maintaining an appropriate diet of undamaged phospho-
lipids is the usual method for supplying and exchanging 
membrane lipids and driving the removal of damaged lipids 
from cells and tissues. However, the exchange and even-
tual removal of damaged membrane lipids using diet alone 
is generally impractical and, for the most part, rarely achiev-
able.110,120,123 Also, most dietary sources of membrane lipids 
are usually not inulin-protected from oxidation and degrada-
tion, so damaged lipids could be introduced into cells and tis-
sues from dietary sources. Thus, the dietary supplementation 
of protected MLR lipids, along with antioxidants, provides a 
convenient method to deliver therapeutic doses of important 
membrane lipids in undegraded, unoxidized forms to main-
tain cellular and tissue membrane function.109,110,119,120,123

An important point is that dietary MLR supplements are 
extremely safe. There have been no indications of toxicity 
in preclinical or clinical studies using MLR phospholipids. 
Nor has any maximum dose level been achieved in multi-
ple animal and human studies (reviewed in ref. 110). The 
U.S. Federal Drug Administration has determined that oral 
MLR supplements made up of membrane GPL are “gener-
ally regarded as safe”.127 A variety of MLR supplements are 
available commercially; a few of these are listed in Table 
1.107,109,110,119,128–131

In the following sections, some of the potential uses of 
MLR in preclinical and clinical studies are reviewed. The 
most obvious limitation in these studies is that they are, in 
general, preliminary or pilot studies, not comprehensive, 
multiple, multi-centered, randomized, controlled trials. This 
is mainly due to the severe limitations in resources to sup-
port research and clinical studies on natural supplements, 
and the fact that this is a relatively new area of investigation.

MLR preclinical studies
The preclinical uses of various MLR phospholipids have 
been reviewed previously.109,110 We will only summarize 
some of the literature on this subject here. Laboratory ani-
mal disease models have been used to study the benefits of 
MLR supplements on various health conditions. For exam-
ple, the benefits of various membrane phospholipids have 
been studied with respect to inflammatory processes, such 
as in rodent models for leukocyte-dependent arthritis.128,132 
Using a murine model for chronic rheumatoid arthritis, Eros 
et al.128 found that an oral mixture of soy phospholipids lim-
ited inflammatory processes in joints. Other uses of mem-
brane GPL to study their effects on inflammation-associated 
conditions are reviewed elsewhere.109,110

Different animal tumor models have been utilized to study 
the benefits of GPL in the suppression of tumor formation 
in laboratory animals, tumor cell proliferation in culture, and 
growth in vivo.109,110 As an example, MLR supplements have 
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been used to decrease the incidence of hepatocarcinoma 
formation in rodents and other tumors.133,134 Elsewhere, bo-
vine milk phospholipids were used to prevent gastric tumor 
formation in older rats,135 and an oral mixture of sphingomy-

elin and other phospholipids was found to inhibit colon tumor 
incidence in aging mice.136

The effects of MLR lipids have also been studied in ani-
mal models developed to analyze metastasis and secondary 

Table 1.  Examples of MLR dietary glycerophospholipid supplements*

Source Product name GPL composition** (%) Reference
Soy Essentiale® 72 PC, others: PS, PE, PI Gundermann107

Soy, Sunflower NTFactor® Lipids 31.6 PC, 25 PI, 19 PE, 13.9 PA, 5.9 DGDG Nicolson119

2.4 PG, 1 LPC, 0.5 PS, 0.7 LPE, 0.3 MGDG
FA: 58 LA(n-6), 16 PlA, 9.7 OA, 5.9 LA(n-3)
3.9 SA

Nicolson & Ash110

Soy Lipoid S45® 45–50 PC, 10–18 PS, 4 LPC
FA: 58–65 LA, 12–17 PlA, 8–12 OA

Eros et al.128

Soy PC55® 45–50 PC, 10–18 PE, 4 LPC
FA: 58–65 LA, 8–12 OA, 12–17 PA

Ladd et al.129

Soy Lecithin 40 PC, 20.8 PE, 3 PS, 2 PA Wilson et al.130

Marine oil Vitalipin® 40 PL, 15 EPA, 9 DHA Küllenberg, et al.109

Bovine milk Lacprodan® 27 PC, 22 PE, 27 SPM, 12 PS, 8 PL
0.1 ArA

Ohlsson, et al.131

*Modified from Küllenberg, et al.109 **Abbreviations: ArA, arachidonic acid; DGDG, digalactosyldiacylglycerol; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, 
fatty acid; GPL, glycerophospholipids; LA, linoleic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; MLR, Membrane Lipid Replacement; MGDG, mo-
nogalactosyldiacylglycerol; OA, oleic acid; PA, phosphatidic acid; PlA, palmitic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PI, 
phosphatidylinositol; PL, phospholipids; PS, phosphatidylserine; SA, stearic acid; SPM, sphingomyelin.

Fig. 3. The “mass action” or “bulk flow” mechanism of lipid transport acts like a conveyor belt system that drives undamaged glyc-
erophospholipids (GPL) from the gastrointestinal system (small intestine) into the blood circulation (portal vein) within lipoproteins, 
lipid globules, and other lipid structures for delivery primarily to the liver and then to other organs and tissues. There, the GPL are 
partitioned and exchanged into cells, intracellular membranes, and other intracellular lipid structures (lipoproteins, liposomes, chylomicrons, 
globules, lipid droplets, etc.). When GPL are in excess, the reverse process also occurs, and the excess replaced GPL (along with other hydro-
phobic molecules) are transported back to the gastrointestinal system for export in stool.
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tumor formation. For example, the effects of hydrogenated 
phosphatidylcholine (PC) plus cholesterol on an orthotopic 
pancreatic metastatic tumor model in mice were investigated 
by Graeser et al.137 Although they found that the growth of 
primary implanted tumor cells was not significantly affect-
ed, distant metastasis formation was inhibited by the MLR 
lipid formulation. The active factor was identified as a PC 
degradation product, lysophosphatidylcholine. The LysoPC 
degradation product was rapidly taken up by the pancreatic 
tumor cells, and there was a significant increase in hydro-
genated FAs in the pancreatic tumor cell membranes, result-
ing in a loss of adhesion properties, especially to platelets 
and endothelial cells. In a murine B16 melanoma model to 
study experimental metastatic pulmonary tumor formation, 
pretreatment of B16 cells with hydrogenated lysophosphati-
dylcholine decreased the number of experimental lung me-
tastases by half.138 As mentioned above, one step that could 
be affected by MLR in the metastatic process is the adhe-
sion of circulating malignant cells to endothelial cells, and in 
some cases, to platelets. This can result in tumor cell emboli 
that lodge in the microcirculation. The embedding of tumor 
cells and tumor cell emboli in the microcirculation is known 
to be an important step in the formation of distant metasta-
ses.139,140

Aging-associated sensory deficits are also modified by 
MLR phospholipids. An interesting preclinical study on MLR 
and aging involved aged rats and age-associated loss of 
hearing.141 Age-related hearing loss is well known in these 
animals and can be monitored by auditory brainstem re-
sponses (ABR). In rats, hearing loss becomes significant 
after 20 months of age. In this study, MLR GPL lipids were 
given to older (18–20-month-old) rats in their chow for six 
months, and ABR responses were assessed and compared 
to control untreated rats. Mitochondrial ETC function, a 
parameter known to decline with age, was determined by 
measuring the transmembrane electrical/chemical potential 
(ΔΨm) of blood leukocytes using the redox dye Rhodamine 
123 and monitoring fluorescence at 530 nm by cell cyto-
fluorography. This dye partitions into the MIM and reports 
ΔΨm in live cells. Mitochondrial mtDNA deletions were also 
monitored during the study by amplifying specific mtDNA 
sequences (ND1-16srRNA and other mt-rRNA sequences) 
and tracking deletions in specific mtDNA sequences in each 
group of animals. After four to six months on the MLR dietary 
supplement, Seidman et al.141 found significant preserva-
tion of the hearing threshold at several frequencies in the 
experimental group of rats, whereas in the control group, the 
hearing loss measured by ABR responses was significant at 
various frequencies. The MLR supplement also prevented 
loss of mitochondrial function measured by a reduction of 
ΔΨm in blood leukocyte mitochondria, as shown by MIM fluo-
rescence of Rhodamine 123. The MLR supplement also low-
ered the number of mtDNA deletions found in the aged rats. 
Therefore, the MLR test group of aged animals receiving the 
MLR GPL were protected against age-related loss of ABR, 
MIM ΔΨm, and increases in mtDNA deletions compared to 
the control group.141

Some clinical uses of MLR in aged subjects
Several case series and clinical trials have studied the ef-
fects of MLR supplements on various age-related clinical 

conditions (Table 2).57,98,107,109,110,120,123,142–159 We will only 
discuss a few clinical studies in the context of aging. These 
examples should not be considered comprehensive, but 
they are typical of the types of clinical MLR studies that have 
been used to examine the effects of MLR on aging and age-
associated chronic illnesses.

Chronic fatigue and fatiguing illnesses
One of the most advantageous clinical uses of GPL supple-
ments has been to remedy fatigue. Fatigue is the most com-
mon symptom conveyed to practitioners by aged and chroni-
cally ill patients.160 Moreover, independent of age, fatigue is 
a common and routine complaint of patients under general 
medical care, and it is especially prevalent in patients over 
the age of 50. Fatigue has been closely associated with ad-
vanced age in several clinical studies.161

Fatigue is also one of the most commonly found co-symp-
toms in most, if not all, chronic morbidities.160,161 Although 
it is considered a complex sensation that is not fully under-
stood, fatigue is generally recognized as a reduction in over-
all energy, including both psychological and physical tired-
ness. Most patients report physical exhaustion, diminished 
physical endurance, and a reduced ability to complete rou-
tine tasks without excessive physical effort. Fatigue is par-
ticularly apparent in aged individuals and those with chronic 
disease conditions, likely due to several factors, especially 
the well-documented reduction of mitochondrial function with 
age.161–163 Moderate and severe fatigue have been corre-
lated with a loss of mitochondrial function and reduced ATP 
synthesis by the mitochondrial ETC. However, mild fatigue 
can be impacted by other causes, such as depression or 
psychiatric conditions.163,164 Therefore, most studies related 
to aging have focused on moderate to severe fatigue. Fa-
tigue that is continuously present for more than six months 
is typically termed chronic fatigue, or, in some cases with 
additional symptoms, chronic fatigue syndrome or myalgic 
encephalomyelitis (hereinafter referred to as CFS/ME).163

MLR GPL supplements have been successfully used to 
reduce fatigue in adults with moderate to severe fatigue, as 
well as in adults with chronic fatigue (fatigue lasting at least 
six months) (reviewed in Ref. 110,118,120). One example 
of such a study is a clinical cross-over trial using MLR GPL 
in elderly subjects with moderate to severe chronic fatigue. 
The results of this study showed a statistically significant 
correlation between reductions in fatigue and improvements 
in mitochondrial function, as determined by MIM transmem-
brane potential in peripheral blood leukocytes.142 After eight 
weeks of an oral GPL supplement (4 g/day), mitochondrial 
function (measured as MIM ΔΨm ) in patients with moder-
ate to severe fatigue improved significantly, and fatigue was 
reduced significantly. After eight to twelve weeks on the oral 
GPL supplement, mitochondrial function was enhanced by 
35% (p < 0.001), and fatigue decreased significantly (36%, 
p < 0.001). Interestingly, the men in the study performed 
slightly better than the women. The improvements found af-
ter 12 weeks on GPL showed that mitochondrial function im-
proved to levels similar to those found in 30-year-old healthy 
adults. After the 12-week GPL supplementation, all partici-
pants were switched to a placebo formulation (without their 
knowledge) for an additional 12 weeks, and their fatigue 
and mitochondrial function levels were recorded. After the 
12-week placebo period, fatigue and mitochondrial function 
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were intermediate between the initial values and those found 
at 12 weeks on the GPL supplement. Therefore, in aged indi-
viduals with moderate to severe chronic fatigue, there were 
highly significant improvements in fatigue scores while on 
the MLR supplement, and mitochondrial function increased 
to levels similar to those found in much younger adults, but 
only if the study participants maintained their daily use of the 
GPL supplement.142

Similar to aging adults with chronic fatigue, the MLR 
GPL supplement was found to reduce fatigue in patients 
diagnosed with CFS/ME, fibromyalgia, Gulf War illnesses, 
chronic infections (such as chronic Lyme disease and Myco-
plasma infections), menopause, and other conditions (Table 
2). MLR also appears to be useful in reducing cancer-related 
fatigue.119,156

In some of the MLR clinical studies, results could be com-
pared between adults (<50 years old) and more senior par-
ticipants (>60 years old). In multiple studies, both younger 
and older subjects gained significant benefits from the use of 
GPL supplements. Often, there were greater improvements 
in fatigue scores in the older subjects compared to those 
less than 50 years of age; however, statistical comparisons 
of the differences between these age groups usually failed to 

reach significance. This strongly implies that both older and 
younger subjects can benefit from MLR supplementation to 
reduce chronic fatigue.

MLR has also been used in combination with mitochon-
drial supplements containing additional ETC cofactors and 
other ingredients to boost mitochondrial function and dimin-
ish fatigue and other symptoms.142,144,146,149,150,154,157 One 
of the supplements listed in Table 2 employed a combination 
MLR formulation containing NADH, CoQ10, and other ingre-
dients that promote mitochondrial function.144 Different MLR 
supplements have been employed to reduce fatigue in in-
tractable chronic fatiguing illnesses and also in chronic infec-
tions like chronic Lyme disease and other conditions.144,154 
There are a number of possible nutrient and supplement 
combinations that can be used to increase mitochondrial 
function.144,145,162,164 We have only discussed a few here.

Pain and associated symptoms
Along with fatigue, pain is a common complaint in patients 
with chronic illnesses and aged individuals.165,166 In higher 
animals, neurotropic pain is transmitted via three primary 
types of afferent nerve fibers: (1) heavily myelinated me-
chanical-afferent nerves responsible for non-noxious tac-

Table 2.  Some uses of oral MLR supplements and suggested daily dosesa

MLR Use Subjects/uses Age group MLR  
supplement

MLR doseb  
(g/day) Reference

Fatigue Aging, fatigue Senior NTF/L 4 Agadjanyan et al.142

Fatigue CFS/ME 18–72 NTF/L 4 Nicolson & Ellithorpe143

Fatigue CFS/ME Adult ATP Fuel 4 Nicolson et al.144

Inflam/fatigue Chronic fatigue 18–75 ATP360 0.4 Hamilton & Jensen145

Fatigue Fibromyalgia Adult NTF/L 4 Nicolson et al.146

Fatigue/pain Menopause Senior NTF/L 3 Hirose et al.147

Weight loss Obesity, fatigue Adult NTF 3–4 Ellithrope et al.148

Brain health Neurodegen. dis. Adult NTF/L 4 Nicolson et al.149

CD health CD risk/CD dis. Senior NTF/L 4 Ellithorpe et al.150

Metabolic health MetSyn/diabetes Adult NTF/L 2–4 Nicolson151

Metabolic health Diabetes Adult ATP Fuel 3–4 Nicolson et al.144

Neurobehavior Autism Sp. dis. Child NTF/L 1–3 Nicolson et al.149

Fatty Liver Fatty liver dis. Adult EPL 1–1.8 Gundermann et al.152,153

Infection Lyme dis. Adult ATP Fuel 4 Nicolson et al.144,154

Infection Mycoplasma Adult NTF/L 3–4 Nicolson155

Fertility Fertility test Adult NTF/L NAc Ferreira et al.98

Fatigue Br cancer Senior NTF/L 4 Nicolson156

Anemia Anemia Adult NTF/L 4 Ellithorpe et al.157

Injury wounds Adult NTF/L 4–6 Nicolson & Breeding158

Autoimmune Rheumatoid arthritis Adult ATP Fuel 4 Nicolson et al.144

Chemical detox GW Illnesses Adult NTF/L 6 Nicolson & Breeding159

General health Aging Senior NTF/L 3–4 Nicolson et al.57,110,120

aModified from Nicolson.123 Abbreviations: Autism Sp. dis., autism spectrum disorder; Br cancer, breast cancer; CD, cardiovascular disease; CFS/ME, chronic fatigue syndrome/
myalgic encephalomyelitis; EPL, Essentiale® phospholipids; GW, Gulf War; MetSyn, metabolic disease/syndrome; MLR, Membrane Lipid Replacement; N/A, not applicable; NTF, 
NTFactor®; NTF/L, NTFactor® Lipids; bSuggested revised dose range in grams of GPL/day; cNot Available.
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tile sensations; (2) myelinated, small-diameter nerve fibers 
that transmit signals of sharp pain; and (3) non-myelinated, 
small-diameter nerve fibers that transmit dull, aching pain.167 
In addition, pain signals can also be amplified in the brain.168

Recently, MLR supplements have been utilized clinically 
to reduce widespread fibromyalgia pain and other forms of 
pain.146,158 The reason MLR supplements have only been 
used recently to reduce pain is that this appears to require 
much higher daily MLR phospholipid dosing than is neces-
sary to alleviate other symptoms like fatigue.158,159 In recent 
clinical case studies and small clinical trials on pain reduc-
tion, the usual daily doses of MLR GPL were much higher 
(4–6 g/day) than those typically given for fatigue reduction 
(2–4 g/day).158,159 Only the higher doses (6 g/day) were truly 
effective in reducing widespread pain, as well as pain due to 
various causes, including chronic pain from gastrointestinal 
symptoms, trauma from gunshot wounds, and other sources 
of pain.158,159 In the case of widespread chronic pain, such 
as found in fibromyalgia, 4.8 g/day of oral GPL for eight days 
was found to significantly reduce pain (p < 0.001), fatigue (p 
< 0.001), and gastrointestinal symptoms (p < 0.001), while 
improving quality of life measurements (p < 0.001).146

For widespread pain and other symptoms often accompa-
nying pain, more complex symptom assessments have been 
used to track patients’ signs and symptoms. For example, 
a six-month study of chemically exposed veterans assessed 
the severities of more than 100 signs and symptoms, self-re-
ported approximately monthly by participants.159 In this open-
label study, chemically exposed veterans (average age>50) 
taking 6 g/day oral MLR GPL recorded their symptom se-
verities over time. By the end of the study, reports indicated 
gradual and significant reductions in pain, fatigue, and other 
symptoms during the study, employing redundancy to con-
firm symptom severities.159 This clinical study followed from a 
case series where the severity of pain was a significant clini-
cal feature.158 In this case series, 50+-year-old veterans with 
severe pain initially took MLR GPL at lower doses (2–3 g/
day), but the dose was later adjusted upward to 4 g and then 
6 g/day to control pain. A notable subject was a 68-year-old 
female with previous gunshot wounds to her abdomen and 
lower back. For several decades, this patient experienced un-
relenting chronic fatigue, pain, diarrhea, gastrointestinal, and 
other unresolved symptoms, even with strong pharmaceuti-
cal pain control. She discontinued narcotic pain treatment 
and was placed on MLR GPL at a dose of 5 g/day, along with 
myofascial trigger point therapy and spinal manipulation. Her 
pain, fatigue, and other symptoms improved over time, and 
she was able to regain control over her bowel movements. 
After three weeks of MLR, her pain, fatigue, and gastrointes-
tinal symptoms improved markedly. However, when she later 
discontinued MLR supplementation, her symptoms slowly 
returned.158 This demonstrates that symptoms like chronic 
fatigue (discussed earlier) and pain require continued MLR 
treatment to be clinically effective.

Pain is a complex sensation, and one type, nociceptive 
pain, has been described in both acute and chronic forms 
as sharp or throbbing pain sensations in the muscles, joints, 
tendons, skin, and other tissues. Although this type of pain 
is usually short-lived, it can also become chronic and is 
thought to be part of the body’s general response to poten-
tially harmful stimuli to protect against potential damage. No-
ciceptive pain has been subdivided into two classifications: 

(1) somatic nociceptive pain, which is usually localized in the 
dermis, and (2) visceral nociceptive pain, which is more dif-
fuse, with poorly defined sensations in the body midline.169 
Multiple stimuli can activate nociceptors to create pain. One 
of the groups of membrane ion channels involved in nocic-
eptive pain transmission is recognized as transient receptor 
potential (TRP) channels.170 TRP channels are modulated 
by membrane GPL, such as phosphatidylinositol 4,5-bispho-
sphate (PI(4,5)P2), which acts as an agonist with desensiti-
zation properties. The addition of PI(4,5)P2 has been shown 
to inhibit heat- and capsaicin-activated transient receptor 
potential channels of the vanilloid subtype 1 (TRPV1), and 
the hydrolysis of PI(4,5)P2 by phospholipase C activation 
can reverse this inhibition, potentiating transient receptor 
potential channels of the vanilloid subtype 1 activity by pro-
inflammatory agents.171 Although TRP channels are acti-
vated by PI(4,5)P2, they can quickly become unresponsive 
(desensitized) and lose their ability to be stimulated. Also, 
phospholipase C can hydrolyze PI(4,5)P2, yielding two clas-
sical second messengers (inositol 1,4,5-trisphosphate and 
diacylglycerol). Thus, small amounts of certain phospholip-
ids, such as PI(4,5)P2 present in some MLR formulations, 
may be essential in producing the pain-reducing properties 
of this MLR supplement.40

Cognition and neurological symptoms
As adults age, neurological alterations occur, leading to 
memory loss and other changes, which have been corre-
lated to differences in the lipid compositions of brain cells 
compared to other tissues. For example, the amounts of 
n-3 polyunsaturated FAs in brain GPL tend to decrease with 
age, which can have profound effects on membrane fluidity, 
membrane domain formation, and the function of membrane 
channels.172

In aging subjects, MLR phospholipids have been used 
to prevent memory loss. For instance, the effects of MLR 
phosphatidylserine (PS) have been studied in a clinical trial 
involving aging patients with Alzheimer’s disease.173 The 
participants in this study ingested 300 mg of PS daily for 
six months. At the end of the six-month period, the subjects 
showed significant improvements in cognition compared to 
controls without PS.173 In a separate study using elderly sub-
jects with age-associated memory impairments, who ingest-
ed 300–600 mg/day of soybean PS for a much shorter (12-
week) period, the results could not be duplicated, suggesting 
that dose and duration of treatment may be important.174

Short-term changes in mental clarity and focus after 
taking MLR phospholipid supplements have also been as-
sessed. In one study, subjects consumed 0.6 g of MLR GPL 
in a liquid formulation. After three hours, fatigue and mental 
focus were assessed using a self-reported survey. Most of 
the participants reacted to the MLR GPL supplement within 
1 h, and by 3 h, there were self-reported improvements in 
cognition, mental clarity, and focus, along with reductions 
in perceived fatigue.175 However, the results of such very 
short-term, subjective studies are difficult to interpret due to 
the inability of subjects to record consistent assessments. In 
most reported MLR studies, improvements in various symp-
toms did not occur that quickly—more time, usually days or 
weeks, was required to see consistent, significant results. 
There was, however, a suggestion that higher daily doses of 
MLR supplements could speed this process.158,159,176 This 
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phenomenon could be similar to the ‘mass action’ or ‘bulk 
flow’ mechanism of MLR, where greater amounts of GPL 
may speed up the replacement and removal process.122

In these and other clinical studies, improvements in cog-
nition, mood, focus, and other parameters were recorded, 
for example, as part of a self-reported survey developed by 
Piper et al.177 for monitoring cancer-related fatigue. Use of 
a more extensive survey form that tracked the severities of 
>100 signs and symptoms may yield more detailed informa-
tion.159 Using more complex survey forms completed repeat-
edly over several weeks (or even several months) resulted in 
more significant and consistent improvements in cognition, 
mood, and other parameters in patients using MLR supple-
ments.

Gastrointestinal symptoms
Two of the benefits of oral MLR phospholipids are that they 
appear to repair the gut epithelium and, in the process, re-
duce gastrointestinal symptoms.134,146,158,159 This has im-
portant implications for microbial translocation disorders and 
leaky gut syndromes, where pathogenic microbes can pen-
etrate the damaged gut epithelial layer, enter the circulatory 
system, and elicit strong host responses.178

MLR GPL has been found to reduce abdominal symptom 
severities and repair gut epithelium, and this has occurred 
as a byproduct of the use of oral MLR to reduce other symp-
toms. In a few clinical studies on fatigue and other symp-
toms, the effects of MLR GPL supplements on gastrointesti-
nal symptoms were also examined.146,159 For example, in a 
study on fatigue, pain, gastrointestinal, and other symptoms 
in fibromyalgia patients taking 4.8 g of MLR GPL/day, there 
were significant (p < 0.001) reductions in these and other 
symptoms, as well as improvements in overall symptom se-
verities and quality of life. Regression analysis of the data 
demonstrated that the reductions in symptom severities were 
consistent and occurred with a low degree of variance.146 In 
chemically-exposed veterans (average age 53) who took 6 
g/day MLR GPL for six months, there were significant re-
ductions in a wide variety of symptoms. The reductions in 
symptom severities were found to be gradual and also had a 
low degree of variance.159 This study will also be discussed 
further in a subsequent section on chemical detoxification.

MLR supplements can also reduce the gastrointestinal 
side effects of commonly used non-steroidal anti-inflamma-
tory drugs (NSAIDs). NSAIDs, like aspirin or ibuprofen, can 
reduce mucus production in the epithelial cell lining. MLR 
supplements have been used to increase the production of 
gastrointestinal mucus. For example, a soy MLR GPL prod-
uct has been used to reduce the severity of gastric mucosal 
lesions produced by NSAID use. Supplementation with this 
MLR GPL product for 14 days was shown to help heal ul-
cers and decrease abdominal pain.179 Thus, in addition to 
preventing the loss of mucus in the gut epithelial lining, MLR 
GPL supplements can aid in repairing damaged epithelial 
membranes and the membranes of surrounding cells.

Cancer and neoplastic diseases
The use of MLR supplements for clinical cancer support, 
such as cancer-related fatigue and pain, and to help reduce 
the adverse effects of chemotherapy and radiotherapy, are 
discussed elsewhere.180,181 Briefly, anti-cancer therapy, 
such as chemotherapy and radiotherapy, results in the gen-

eration of excess ROS, and this excess oxidative stress can 
damage cellular membranes and cause adverse symptoms. 
For example, during therapy, ROS are generated by anthra-
cycline antibiotics, alkylating agents, other drugs, and radio-
therapy.156,180,181 Chemotherapy can also displace important 
mitochondrial cofactors from MIM, such as CoQ10.180

MLR supplementation has been used to diminish the ad-
verse effects of chemotherapy (and potentially radiotherapy) 
in cancer patients, especially those of advanced age. For 
example, an MLR GPL product has been utilized in cancer 
patients to reduce some of the most common adverse ef-
fects of cancer therapy, such as chemotherapy-induced can-
cer-related fatigue, malaise, headaches, nausea, vomiting, 
diarrhea, and other side effects.180,181 In two clinical studies 
using advanced metastatic colon, pancreatic, or rectal can-
cer patients who received combination chemotherapy, MLR 
was used to reduce the adverse effects of chemotherapy.182 
When patients used the MLR GPL supplement, there were 
significantly fewer episodes of fatigue, insomnia, nausea, 
diarrhea, constipation, skin changes, and other adverse ef-
fects compared to the control chemotherapy group. Adding 
MLR phospholipids to post-cancer therapy also resulted in 
improvements in the incidence of fatigue, insomnia, nausea, 
diarrhea, impaired taste, constipation, and quality of life in-
dicators.182

Cardiovascular conditions
Long-term oral ingestion of MLR phospholipids in aging 
adults can produce blood lipid profiles that are associated 
with a reduced risk of certain chronic morbidities, such as 
those seen in cardiovascular diseases (reviewed in Ref. 
107). For example, blood cholesterol levels were lowered 
significantly in patients with hyperlipidemia who used MLR 
GPL supplements.183,184 In one study, diabetic patients 
received MLR GPL treatment for two months, and this re-
sulted in lower total blood cholesterol, low-density lipopro-
teins (LDL) cholesterol, and triglycerides, while high-density 
lipoproteins cholesterol was increased.185 These are lipid 
profiles that are consistent with a reduced risk for cardiovas-
cular disease.109,110

Hypertension, another risk factor for cardiovascular dis-
ease that is commonly found in aging populations, has also 
been attenuated with MLR phospholipid supplementation. In 
studies with obese patients with hypertension, dietary GPL 
reduced total blood cholesterol, LDL, and other lipids while 
reducing blood pressure (reviewed in Ref. 109).

High blood levels of apolipoprotein A1 (apoA1) have been 
proposed to be protective against arteriosclerotic disease. 
Therefore, Poliche et al.186 used PC supplementation to in-
crease the blood levels of apoA1 in patients with type IIA 
hypercholesterolemia. Poliche et al.186 found that MLR PC 
significantly increased the blood levels of apoA1 and apoli-
poprotein E and thus are likely to contribute to a reduced risk 
of arteriosclerosis.186

A blood marker that has been especially useful for pre-
dicting hospitalization and death from heart failure is homo-
cysteine. High homocysteine blood levels are associated 
with an increased risk of hospitalization and death due to 
heart failure, stroke, renal failure, and other medical condi-
tions.187,188 Patients greater than 60 years of age with blood 
homocysteine in the high-risk concentration range were 
given a combination MLR GPL supplement to reduce their 
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chronic fatigue, and as part of their routine clinical tests, 
blood homocysteine levels were followed for six months.150 
In these patients, there was an average reduction in blood 
homocysteine levels of 31.8% (p < 0.001) by the end of the 
monitoring period, and these lower levels were consistently 
below the blood levels of homocysteine that predict car-
diovascular adverse events. After six months on the MLR 
supplement, their blood homocysteine levels were reduced 
from high-risk levels (mean, 10.85 ± 0.42 µmole/L) to blood 
levels (mean, 7.40 ± 0.42 µmol/L) that do not predict hospi-
talization and death due to heart disease. There was also 
a 59.6% reduction in fasting insulin levels, and there were 
no cardiovascular events during the trial and for at least six 
months after completion of the trial.150 Similar results were 
found with an MLR preparation by Olthof et al.189 in healthy 
aged men. In this study, homocysteine blood levels, along 
with total cholesterol, LDL, and triglycerides, were reduced 
significantly within 30 days.

Chronic inflammation
Chronic inflammation has been implicated in many diseas-
es and morbidities, including various types of cancer, heart 
disease, Alzheimer’s disease, asthma, rheumatoid arthritis, 
and type 2 diabetes.190 Chronic inflammation is a common 
condition in advanced age and a significant risk factor for 
morbidity and mortality among the elderly.191 In seniors, it is 
characterized by the presence of excess pro-inflammatory 
cytokines that can negatively impact the body internally, af-
fecting multiple organs and tissues while showing no initial 
outward symptoms.23,192 Such inflammation can be ampli-
fied by several factors, including diet, smoking, excessive 
consumption of alcohol, stress, weight gain, reduced physi-
cal activity, and sleep disturbances.193 High blood levels 
of pro-inflammatory markers and their presence in other 
tissues are often found in older individuals who also have 
reduced physical and cognitive functions. The presence of 
high levels of pro-inflammatory cytokines has been shown to 
increase the risk of cardiovascular disease, frailty, and other 
morbidities.23,192

Chronic inflammation in seniors, also termed inflamm-
aging, is related to the activation of innate immunity, excess 
chronic pro-inflammation, and other factors.192–194 Inflamm-
aging is usually managed by changes in lifestyle and diet. 
For example, modifications of diet to include caloric restric-
tion and the intake of foods rich in antioxidants and polyphe-
nols, as well as dietary MLR supplements, have been used 
to reduce inflamm-aging.195,196 Using a marine-sourced GPL 
with a high content of n-3 FA, reductions in inflammatory 
reactions were assessed in older patients with cardiovas-
cular disease and/or rheumatoid arthritis by the inhibition of 
inflammatory prostaglandins. Supplementation with the krill 
oil preparation (300 mg/day) reduced C-reactive protein lev-
els and moderated the severity of several symptoms, such 
as pain, joint stiffness, and other symptoms.197 Krill oil has 
also been used to reduce various symptoms associated with 
inflammation, such as premenstrual syndrome. In a blinded, 
randomized clinical trial, a krill oil supplement was found to 
be effective in reducing premenstrual syndrome symptoms, 
including joint pain, abdominal pain, swelling, and breast 
tenderness.198 In another study, Hirose et al.147 used 0.6 
or 1.2 g/day MLR GPL to reduce symptom severity in ag-
ing women with menopausal symptoms. This randomized, 

double-blind, placebo-controlled trial found higher mood and 
quality of life scores with the higher MLR daily dose, as well 
as reductions in diastolic blood pressure and cardio-ankle 
vascular index (p = 0.03–0.05).147

Chemical detoxification
As described above, oral MLR can be used to lower and re-
move excess blood cholesterol as well as oxidized, damaged 
GPL and reduce the risk of cardiovascular disease.183,184,186 
This process appears to work through a “mass action” or 
“bulk flow” mechanism that is concentration-dependent.122 
By administering higher doses of MLR GPL (usually 5–6 g/
day), this process can be used to safely remove toxic, hy-
drophobic molecules from cells and tissues. The removal 
process is thought to work by the partitioning and exchange 
of hydrophobic toxins, petrochemicals, and other toxic hy-
drophobic molecules into lipid globules, liposomes, chy-
lomicrons, and other lipid structures that form when excess 
phospholipids are present due to the dietary influx of MLR 
lipids.110,120,122 By partitioning, exchanging, and secreting 
the damaged lipids (and hydrophobic chemicals and toxins), 
they can be slowly transferred from cells and tissues into 
the blood circulation and eventually delivered to the small 
intestinal epithelium, where further exchange can occur with 
gastrointestinal lipid globules and liposomes. More simply, 
the lipid forms are more directly expelled in a concentration-
driven process. Thus, the “conveyor belt” process can re-
move excess damaged lipids and other hydrophobic toxic 
molecules and chemicals, which are eventually secreted in 
the stool (Fig. 3).110,123,159

Using obese and/or diabetic patients, the use of MLR li-
pids, such as Essentiale® phospholipids, has been found 
useful for the treatment of patients with non-alcoholic fatty 
liver disease or alcoholic liver disease. Readers are referred 
to the comprehensive reviews by Gundermann et al. for 
more details.152,153 These clinical studies used MLR lipids 
at IV doses ranging from 1.05–1.8 g/day, and the treatments 
lasted from one to 24 months. The outcomes of these stud-
ies depended on clinical assessments, including the reduc-
tion of pain, hepatomegaly, dyspeptic symptoms, etc., and 
were supported by various imaging procedures, histology, 
and lab tests for markers of liver cytolysis. Gundermann et 
al.153 have stressed that the success of the MLR GPL in 
treating liver diseases depended on its high content of PC 
(72–96% PC, especially 1,2-dilinoleoylphosphatidylcholine) 
to increase the general fluidity and repair of liver cell mem-
branes and provide anti-inflammatory, anti-fibrotic, apopto-
sis-, cell receptor-, and lipid signal-regulating properties.

The likely reason that the above approaches were suc-
cessful is based, in part, on the principles of “bulk flow” 
or “mass action” exchange of MLR lipids.122 As described 
above, this approach has also been used to treat chemically 
exposed veterans and reduce a variety of symptom severi-
ties.159 In this clinical study, veterans were exposed to burn 
pits, oil well fires, and other environmental sources of chemi-
cal contaminants, and they later presented with multi-symp-
tom illnesses (Gulf War Illnesses). Even two decades after 
exposures, their symptoms persisted, so these veterans 
were placed on 6 g/day oral MLR GPL for six months, and 
their multi-symptom severities were self-reported over this 
time period. During this open-label clinical trial, there were 
gradual and significant reductions in symptom severities in 
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several categories related to fatigue, pain, breathing, vision, 
sleep, balance, urinary and gastrointestinal symptoms, mus-
culoskeletal and nasopharyngeal symptoms, and chemical 
sensitivities. There were no adverse incidents during the 
study, and the all-natural oral study MLR supplement was 
extremely well tolerated.159 In the future, the use of MLR 
supplements to remove or counteract hydrophobic toxins or 
other toxic chemicals should be considered for the treatment 
of chronic illnesses where environmental hydrophobic toxins 
or contaminants are present.

MLR dose levels in clinical studies
MLR GPL supplements have been used in various daily 
dose levels to reduce signs and symptoms in various clinical 
conditions (Table 2). In earlier clinical studies, there was an 
attempt to find daily MLR dose levels that resulted in positive 
outcomes, for example, in enhancing mitochondrial function 
or reducing fatigue. We have used increasing daily dose lev-
els of MLR GPL to improve results and significantly decrease 
various symptom severities, but this still often required sev-
eral months of treatment to observe significant differences. 
To speed up the process of reducing symptom severities, we 
have gradually increased the daily dose levels of MLR GPL 
in clinical studies to improve the rates of turnover, exchange, 
and replacement of damaged membrane lipids.158 Our goal 
has been to repair enough damage to cellular membranes in 
a timely manner to return membrane-associated functions to 
the levels seen in normal age-matched subjects.

Some clinical conditions apparently require higher thresh-
old doses of MLR lipids to be effective compared to those 
employed for general nutritional purposes. Although the low-
er MLR GPL dose levels (for example, 1 g/day MLR GPL) 
were found to be useful in achieving positive results in reduc-
ing some symptoms over time, we have found that higher 
dose levels (for example, 4–6 g/day or higher) resulted in 
significant reductions in symptom severities within weeks in-
stead of months. An example of this is the reduction of pain 
by MLR phospholipids. The reduction of widespread pain 
required a threshold level or a much higher daily dose level 
of MLR lipids (>5g/day GPL) to see any benefits.158,159 The 
possible reason for the requirement of higher doses of MLR 
phospholipids to see significant reductions in widespread 
pain could be due to the effects of a very small fraction of a 
specific GPL in MLR supplements. We reasoned that it could 
be a minor GPL fraction in an MLR supplement that bound to 
and stabilized nerve membrane channels, normalized pain, 
and affected neuron cells in terms of resting potentials and 
the spontaneous triggering of depolarization.40 Recent re-
sults using 6 g/day MLR GPL to drive the replacement or 
removal of damaged lipids and toxic hydrophobic chemicals 
in chemically exposed veterans further confirmed that this 
process is likely driven by a mass-action mechanism (as pro-
posed by Mayor et al.122) that works best when higher daily 
dose levels of MLR lipids are employed.159

Conclusions and perspective
Finding suitable, safe, and effective anti-aging supplements 
for an aging populace has been an ongoing goal in the nu-
traceutical field. Here we have described an approach to 

developing new, safe nutraceuticals with beneficial uses for 
human health based on basic scientific information, such as 
the composition, structure, and dynamics of biological mem-
branes and the activities of their components. In the exam-
ple here, MLR supplements that contain inulin-protected, un-
damaged membrane GPL have been found to be effective in 
a number of clinical studies in improving health. Efforts have 
been made with MLR to improve and lower age-associated 
symptoms and increase quality of life indicators. MLR sup-
plementation also appears to be useful for delaying some 
of the functional decline seen in patients as they age by re-
storing cellular functions to levels found in younger adults, 
such as increasing mitochondrial function. Thus, MLR sup-
plementation has been especially useful for safely reduc-
ing certain age-related morbidities, such as those found in 
cardiovascular conditions, neurodegenerative diseases, 
chronic infections, and metabolic disorders. In addition, MLR 
with GPL can modify a variety of general symptoms like age-
associated fatigue and frailty and improve quality of life indi-
cators. MLR supplements also have other uses; for example, 
they have been shown to improve the uptake and bioavail-
ability of some nutrients and cofactors. Finally, MLR supple-
mentation can be used to slowly remove hydrophobic toxins 
and other toxic molecules, such as petrochemical contami-
nants, which can accumulate with age and often accompany 
environmental exposures and long-term chronic conditions.
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